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Summary: Airflow models of buildings
require dozens to hundreds of parameter
values, depending on the complexity of the
building and the level of fidelity desired for
the model. Values for many of the parameters
are usually subject to very large uncertainties
(possibly an order of magnitude).
Experiments can be used to calibrate or
“tune” the model: input parameters can be
adjusted until predicted quantities match
observations. However, experimental time and
equipment are always limited and some
parameters are hard to measure, so it is
generally impractical to perform an
exhaust ive  se t  o f  measurements .
Consequently, large uncertainties in some
parameters typically remain even after tuning
the model. We propose a method to help
determine which measurements will
maximally reduce the uncertainties in those
input parameters that have the greatest
influence on behavior of interest to
researchers. Implications for experimental
design are discussed.

K e y w o r d s :  airflows, modelling, sensor
placement, COMIS, CONTAM
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1 Introduction

Experiments can measure airflow and pollutant
transport in buildings, but these experiments are
difficult and time-consuming. In practice, there are
never enough resources to monitor pressures and
concentrations in every area of interest, so
experimenters must ask: Where should the limited
number of available sensors be deployed to best
estimate the air flows, pollutant transport, or other
quantities that are most important?  Implicit in this
question is another question: what do we mean by
“most important”? The flow rate through a closet
may be unimportant in most contexts, but may be
very important if toxic chemicals are stored there.

Often experiments are designed to collect data
that can be used to create or improve a building
model, which can then be used to investigate
questions of interest and to understand the answers
to those questions.

For the work described here, a specific,
quantitative question that is of primary interest
must be selected; parameters are important
inasmuch as they affect the answer to that question.
For illustration, we’ll consider a specific six-story
building, and the question of primary interest is:
what is the time-average concentration on the
fourth floor, over the first twenty minutes after
onset of a continuous first-floor release of a tracer
gas? This sort of question is of great interest to
building operators or security personnel who are
concerned about a possible chemical or biological
attack.

Our approach to determining the best
measurements to make begins with a computer
model of the building. Computer programs such as
Contam [1] and COMIS [2] can be used to predict
airflow and pollutant transport. In these programs, a
building is modeled as a collection of “zones” that
are linked together.   A building model specifies
each zone’s volume, its connections to other zones,
and driving forces such as temperature differences,
exterior winds, and ventilation fans. Given the
building geometry and the assumptions built into
the modeling approach, the input parameters
(including the assumed wind pressures and other
driving forces), collectively determine the
differential pressures across every pair of zones, as
well as the airflows between zones and thus the
pollutant transport in the building.

Parameters describing the connection between
zones can be hard to measure. For instance, the
“mass flow coefficient” (MFC), one of the
parameters that controls the mass flow rate as a
function of the pressure drop between the zones1, is
closely related to the total area of all of the cracks,
ducts, and other openings that connect the zones. A
zone, such as a set of offices, may be connected to a
ceiling plenum by an enormous number of cracks
and penetrations: cracks around thousands of
ceiling tiles, penetrations by pipes and conduits,
ventilation grilles, and so on.  Even if visual
inspection is possible, the total effective cross-
sectional area of these connections can be estimated
only with large uncertainty.

Most experiments cannot directly measure the
parameters that are used as inputs to the model.

                                                  
1 The relationship between flow rate and pressure is
nonlinear (and in fact, the exponent of pressure, s, is itself
a parameter of the model), so the MFC has complicated
units that would be distracting to quote each time they are
needed.  We will discuss numeric values of the MFC
throughout this paper, the units are: Kg m3 Pa-s.



Instead, an experiment might release tracer gas in a
zone and measure concentrations in other zones,
along with zone pressures; the data must then be
interpreted to estimate the parameters that describe
the links.

Suppose we have a small number of sensors,
each of which can measure the pressure difference,
or “differential pressure,” between two adjacent
zones. (Differential pressure is not normally an
input parameter). Where should we place these
sensors to allow us to optimally estimate the
parameter values that control the time-average
concentration on the fourth floor?

A potential approach to this problem would be
to first determine which input parameter is most
highly correlated with average concentration and
then to try to identify which pressure measurement
would give the most information about that single
parameter. This approach ignores the possibility
that some other pressure measurement could give
information about  several  parameters
simultaneously, and thus could provide more
overall reduction in the uncertainty in average
concentration. This is far from a purely theoretical
concern, as we will show.

A better approach is to directly investigate the
relationship between the pressure measurements
and the time-average concentration.  Attacking the
problem in this way automatically takes into
account the complicated dependence between
model inputs and outputs.

2 Methods

Our computational approach is as follows.

1. Define a main question of interest that is to be
addressed, and that could be determined from
the building model if the input parameters
were known; for illustration here, the value of
interest is average concentration on the fourth
floor during the first 20 minutes of the first-
floor release of one unit per second of tracer
gas.

2. Create a building model, and define parameter
distributions for those input parameters that
are uncertain.

3. Perform Monte Carlo sampling from the
distributions of input parameters, and use these
parameters as inputs to COMIS to generate
predictions of both the main output of interest
and of quantities that could be measured in an
experiment (differential pressures, in this
case).

4. Select the differential pressure measurement
that has the greatest correlation with time-
average fourth-floor concentration.  If multiple
measurements can be made, then use a
standard procedure known as CART

(described below) to select the set of
measurements that jointly predict the time-
average fourth-floor concentration.

We created a COMIS model of a real-world six-
story commercial building [3]; a small part of the
model is illustrated in Fig. 1. The model is a
substantial simplification of the building; for
example, each entire floor of the building is
modeled as a single well-mixed zone. Even with
these simplifications, the model has about 100
adjustable parameters.  We estimated each of these
parameters for the real building, based on
observation and engineering judgment, and created
statistical distributions that summarize the
uncertainties in the parameters.  For example, the
MFC for the link between the first floor and the
ceiling plenum was assigned a lognormal
distribution with a geometric standard deviation
(GSD) of 3.76: the actual value of the coefficient is
probably within about a factor of four of our
estimate, but an error of a factor of fifteen (or
more) is not out of the question.

Figure 1. A small part of the building model used for this
work.  Each zone (box) requires several parameters, as
does each link (line) between zones.  Even this simplified
model for a six-story building requires about 100 input
parameters, some of them highly uncertain.

Monte Carlo sampling from the uncertainty
distributions produced 500 sets of input parameters
for the COMIS computer program, which simulated
the airflow and pollutant transport in the case of a
unit-per-second tracer-gas release on the first floor
under normal operating conditions for the
ventilation system. Each simulation is a single
“realization” of the building model.

Figure 2 shows the predicted 20-minute-
average fourth-floor concentration versus time for
fifty of the realizations, and also shows a histogram
of the time-average concentrations for all 500
simulations.  The large variability in predicted
concentrations and time averages reflects the large
uncertainties in many of the input variables.

In addition to predicting the concentrations
shown in Fig. 2, the model also predicts zone
pressures. If a differential pressure measurement is
made in the actual building, for most of the
realizations it will be substantially different from
the model prediction. The sets of parameter values
that are inconsistent with the measurement can be
discarded, leaving only those sets of parameter
values that are consistent with the measurement.
Thus, experimental data can be used to reduce the



uncertainties in those parameters that affect the
pressure (see [4] for an example in a slightly
different building-related context). This is one way
to “tune” the model to data.

Figure 2. Left: Histogram of predicted 20-minute-average
fourth-floor concentration, showing the number of
realizations in each bin of average concentration.  Right:
Time series of predicted fourth-floor concentration for 50
of the 500 realizations of the model.

Suppose some input parameters that strongly
affect a given pressure measurement also affect the
time-average concentration on the fourth floor.  In
this case, realizations that are consistent with the
pressure measurement will have a restricted range
of time-average concentrations.  To put it another
way, if one of the differential pressures is highly
correlated with the fourth-floor time-average
concentration, measuring that pressure will give us
information about the parameters that affect the
concentration. Finding a differential pressure that is
highly correlated with the time-average
concentration will guarantee that the pressure
measurement will help tune the important
parameter values. The appeal of this approach is
that it can be automated: there is no need to attain a
detailed understanding of how each input
parameter affects the pressures and the
concentrations.  In a sense, the model itself
contains all of the “understanding” that is required.

The approach described above will identify the
single pressure measurement that is optimal, but
what if we have more than one pressure sensor (as
is usually the case)?  Selecting all of the pressure
measurements that have relatively high correlations
with the time-average fourth-floor concentration
will probably not be optimal, because many of
these pressure measurements will be highly
correlated with each other and will thus convey
information about the same input parameters.  If
the pressure drop from the first floor to its ceiling

plenum is likely to be very close to the pressure
drop from the second floor to its ceiling plenum,
then there is little point in measuring both, and the
second sensor would be better used elsewhere.

The best method for choosing multiple sensor
locations is a subject of current research.  One
possibility is known as “Classification and
Regression Trees,” or CART [5]. CART, a standard
statistical procedure, creates a “tree” for predicting
a quantity of interest, such as the time-average
fourth-floor concentration.  At each branching point
in the tree, following the left branch leads towards
lower values of the concentration, while following
the right branch leads to higher values.

  Suppose the first branch of the tree is based on a
pressure measurement in location 1: differential
pressure lower than 12 Pa. leads to the left branch,
higher leads to the right.   Following the left branch,
the distribution of time-average concentrations has
variance V1; following the right branch, the
distribution has variance V2.  Given the model-
predicted concentration measurements and
differential pressures, CART analysis chooses the
measurement (location 1, in this example) and the
cut-point (12 Pa.) so as to minimize Max(V1,V2).
Each branch is treated independently, e.g. once the
first branching is decided, the next question is
“considering the realizations for which the pressure
measurement in location 1 is less than 12 Pa., what
additional pressure measurement and cut-point will
minimize the concentration variances?”  The result
can be a tree like the (hypothetical) one shown in
Figure 3, in which different branches can rely on
different cut-points or even on different
measurements.  In this case, three pressure
measurements are needed in order to traverse the
tree.

Figure 3. Tree showing the outcome of a hypothetical
CART tree for predicting the time-average fourth-floor
concentration from several pressure measurements.  At
each step, CART analysis chooses a variable (pressure1,
pressure2, or pressure3) and a cutpoint so that following
the tree will minimize the variance in the parameter of
interest. The left-most node of the tree has the lowest
average concentrations, right-most has the highest, and
other nodes are intermediate.



Figure 4.  Left column: 20-minute-average fourth-floor concentration (top) and pressure drop from first floor to ceiling
plenum (bottom), plotted against mass flow coefficient for link #1. The bottom axis label applies to both plots. Right column:
20-minute-average fourth-floor concentration (top) and pressure drop from first floor to ceiling plenum (bottom), plotted
against mass flow coefficent for link #2.  Center: 20-minute-average fourth-floor concentration plotted against pressure drop
from first floor to ceiling plenum.  In all of the plots, dark circles show realizations with a predicted pressure drop from first
floor to ceiling plenum of about 6 Pa. The left and right columns plot output predictions against input parameter values; the
central column plots output predictions against one another.

Results
Figure 4 shows the interplay between a few of the

input parameters and output predictions for our
exemplary six-story building with its large parameter
uncertainties; the significance of the two different
plotting symbols is explained below.  Links are
numbered for convenience; their physical locations
are summarized in Table 1. Each point in Figure 4
represents a single model realization (a random
sample of the 500 realizations is shown).

Each realization should be conceptualized as a
different possible six-story building, not a different
condition in a single building.  For instance,
considering the central plot, it is tempting to think that
the model predicts that increasing the pressure
difference between the first floor and the ceiling
plenum will also increase the time-average
concentration on the fourth floor. In fact, there is no
way to “increase the pressure difference” while
holding all else constant: the pressure difference is a

model output, and depends in a complicated way on
many input parameters. A more correct interpretation
is “if a six-story building like this one is has a
relatively large pressure difference between the first
floor and the ceiling plenum, it will probably also
have a relatively high time-average concentration on
the fourth floor.”

The MFC values are random draws from
lognormal distributions that are based on our
assessment of the likely values of these parameters,
which is why there are many realizations that assume
low values for these parameters, and only a few that
use higher values.

The central panel plots two model predictions
against each other: the 20-minute-average fourth-floor
concentration, in the case of a unit-per-second release
on the first floor, and the differential pressure between
the first floor and the ceiling plenum.  (In this
building, first floor is pressurized relative to the
plenum because the plenum is part of the ventilation



return system). There is a very strong correlation
between this pressure difference and the average
fourth-floor concentration. For our relatively simple
six-story building model it is possible to trace through
the model and see why this is so, but it is not
necessary to do this in order to conclude that
measuring this pressure drop will provide information
about the parameters that affect the time-averaged
fourth-floor concentration.

To see how this works, suppose a measurement
of the differential pressure from the first floor to the
ceiling plenum finds and that it is about 6 Pa.  (The
realizations for which the differential pressure is
around 6 Pa. are indicated by black dots in all of the
plots in Figure 4.)  As can be seen in the lower left
and lower right plots of Fig. 4, a differential pressure
near 6 Pa. only occurs for certain ranges of the MFC
values: between 0–0.2 or so for link #1, and between
0–1 for link #2 (see footnote 1 for units).  According
to the model, a low value of the MFC for link #1 is
not sufficient to guarantee a differential pressure near
6 Pa.—many other parameters are involved too—but
it is necessary to generate a differential pressure near
6 Pa. This is the principle that allows the pressure
measurements to be used to tune the input parameters.

What if we were to measure a lower value of the
differential pressure?  As the lower left and lower
right panels of Fig. 4 show, according to the model a
pressure measurement of, say, 2 Pa. could be
generated by any of a very wide range values for the
MFC of link 1 and link 2. Does that mean that if we
find that the pressure difference between the first floor
and the ceiling plenum is low, we haven’t learned
anything about any of the input parameters?  No. The
predicted relationship between pressure and average
concentration must be caused by some input
parameter or parameters.  In this example there are
two phenomena: (1) some other parameters come into
play, and (2) although the MFC for either link #1 or
#2 can fall within a wide range and still lead to a low
average concentration, low concentrations usually
occur only when MFC for link #1 is low and for link
#2 is high, or vice versa.

Table 1. Description of links between zones, for four out of
the 60 links in the model.

Link Desciption

1 Connection between HVAC supply penthouse
and outdoors.

2 Connection between ceiling plenum and HVAC
return duct.

3 Connection between supply duct for the fourth
floor and supply duct for the lower floors.

4 Connection between the fifth floor and its ceiling
plenum.

Figure 5 shows the predicted 20-minute-average
fourth-floor concentration plotted against the MFC for
four links in the model; realizations for which the
differential pressure between the first floor and the
ceiling plenum is around 2 Pa. are plotted with black
dots.   In contrast to the situation when the differential
pressure is 6 Pa., a pressure of 2 Pa. is consistent with
a wide range of values for the MFC of link #1 and
link #2 (top row of plot).  However, the MFC values
for some other links (bottom row shows two
examples) are more constrained.  This is not some
happy accident; given the central plot of Fig. 4,
something like this had to happen.

Figure 5. Predicted 20-minute-average fourth-floor
concentration plotted against the MFC values for several
links. Realizations that lead to a differential pressure near 2
Pa. from the first floor to the ceiling plenum are plotted with
black dots.

For our six-story building model, the pressure
drop from the first floor to the ceiling plenum is so
highly correlated with the fourth-floor 20-minute-
average concentration that, if we believe the model,
this measurement is by far the most important one.
But if we have two differential pressure sensors,
where should we place the second one?

Figure 6 shows the CART tree for predicting 20-
minute-average fourth-floor concentration from
differential pressures, for a unit release per second on
the first floor. At each terminal node, the average ppm
value is shown for the realizations that comprise the
node.  For several of the routes through the tree, the



result is just an inefficient way of duplicating the
relationship, shown in Fig. 4, between the first-floor-
to-ceiling-plenum pressure and the fourth floor
concentration. But CART finds that if the first-floor-
to-plenum pressure drop is high (above 7 Pa.), then
the pressure drop from the supply duct to the fourth
floor affects the fourth-floor concentrations
substantially.  If it is possible to make two differential
pressure measurements, then these are the two to
measure.

The utility of these two pressure measurements
makes sense for our building, because the first-floor
measurement is related to how quickly the gas will be
pulled into the ventilation system, and the supply duct
measurement is related to how quickly the gas in the
ventilation system, which re-circulates some air, will
be supplied to the fourth floor. (From this explanation,
it is “obvious” that these are the two measurements to
make, but this was not obvious to us before we started
this analysis!)

Figure 6. CART tree for predicting 20-minute-average
fourth-floor concentration from differential pressures, for a
unit release per second on the first floor. At each terminal
node, the average ppm value is shown for the realizations
that comprise the node.

Discussion

Buildings are complicated.  Indeed, even
simplified building models are complicated.
Consequently, it can be hard to understand how the
parameters that describe the building are related to the
airflows and pollutant transport in the building. It can
be hard to figure out what parameters are the most
important to measure, and it can be hard to figure out
what measurements will provide the most information
about those parameters.  In practice, designers of
experiments rely on their judgment in determining
which parameters need the most attention and in
deciding where to place measurement devices.  They
simply have no other option, since experiments are
typically completed before any modeling is begun,
even though the goal of experiments is often to allow
construction of an acceptably accurate model.

An alternative exists, as discussed in this paper.
Create a preliminary model that relies only on the
connectivity of the zones (what is connected to what)
and on easily observable parameters such as zone
volumes. Describe other parameters with uncertainty

distributions. Sample from the parameter distributions
and exercise the preliminary model, and analyze the
results to determine what measurements will most
reduce the uncertainties in the parameters that affect a
specific question of interest. When the ultimate goal
of the experimental program is to collect information
that allows creation of a building model, this
procedure doesn’t require much extra work, but rather
a shift of some modeling work from post-experiment
to pre-experiment.

Of course, this approach is only a starting point
for selecting candidate measurement locations. Even
something as simple as the connectivity in the
preliminary model could be incorrect. If the building
model is substantially wrong, then of course the
predictions from the model may not be useful for
selecting measurement locations.

The approach described here will at least produce
a list of recommended measurement  locations, and
the means for the person designing the experiment to
investigate why they are recommended by making
plots such as Figures 4, 5, and 6.  She can then
investigate and judge whether these recommendations
are reasonable.
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